(a) From the sum of 3x – y + 11 and – y – 11, subtract 3x – y – 11.
(b) From the sum of 4 + 3x and 5 – 4x + 2x2 , subtract the sum of 3x2 – 5x and - x2 + 2x + 5.
Solution:
Let's use the concept of addition and subtraction of algebraic expressions to solve the given questions.
(a) From the sum of 3x - y + 11 and - y - 11, subtract 3x - y -11
First, we add 3x - y + 11 and - y - 11
= 3x - y + 11 + (- y - 11)
= 3x - y + 11 - y - 11
= 3x - 2y
Now from 3x - 2y subtract 3x - y - 11
= 3x - 2y - (3x - y - 11)
= 3x - 2y - 3x + y + 11
= - y + 11
(b) From the sum of 4 + 3x and 5 – 4x + 2x2 , subtract the sum of 3x2 – 5x and - x2 + 2x + 5
Add 4 + 3x and 5 - 4x + 2x2
= 4 + 3x + 5 - 4x + 2x2
= 2x2 - x + 9
Now add 3x2 - 5x and - x2 + 2x + 5
= 3x2 - 5x + ( - x2 + 2x + 5)
= 3x2 - 5x - x2 + 2x + 5
= 2x2 - 3x + 5
Now subtract 2x2 - 3x + 5 from 2x2 - x + 9
= 2x2 - x + 9 - (2x2 - 3x + 5)
= 2x2 - x + 9 - 2x2 + 3x - 5
= 2x + 4
☛ Check: NCERT Solutions for Class 7 Maths Chapter 12
Video Solution:
(a) From the sum of 3x – y + 11 and - y – 11, subtract 3x – y – 11. (b) From the sum of 4 + 3x and 5 – 4x + 2x², subtract the sum of 3x² – 5x and - x² + 2x + 5.
Maths NCERT Solutions Class 7 Chapter 12 Exercise 12.2 Question 6
Summary:
(a) From the sum of 3x – y + 11 and - y – 11, when 3x – y – 11 is subtracted, we get - y + 11. (b) From the sum of 4 + 3x and 5 – 4x + 2x2, when the sum of 3x2 – 5x and - x2 + 2x + 5 is subtracted, we get 2x + 4.
☛ Related Questions:
- Simplify Combining Like Terms I 21b 32 7b 20b Ii Z2 13z2 5z 7z3 152 Iii P P Q Q Q P Iv 3a 2b Ab A B Ab 3ab B A
- Add I 3mn 5mn 8mn 4mn Ii T 8tz 3tz Z Z T Iii 7mn 5 12mn 2 9mn 8 2mn 3 Iv A B 3 B A 3 A B 3
- Subtract I 5y2 From Y2 Ii 6xy From 12xy Iii A B From A B Iv Ab 5 From B5 A V M2 5mn From 4m2 3mn 8 Vi X2 10x 5 From 5x 10
- A What Should Be Added To X2 Xy Y2 To Obtain 2x2 3xy B What Should Be Subtracted From 2a 8b 10 To Get 3a 7b 16
visual curriculum