125 × x⁻³ / 5⁻³ × 25 × x⁻⁶.
Solution:
Given, 125 × x⁻³ / 5⁻³ × 25 × x⁻⁶
We have to find the value of the given expression.
We know, 125 = 5³
25 = 5²
Now, 125 × x⁻³ / 5⁻³ × 25 × x⁻⁶ = 5³ × x⁻³ / 5⁻³ × 5² × x⁻⁶
Considering 5⁻³ × 5²,
Using law of exponents,
am × an = am + n
5⁻³ × 5² = 5-3 + 2 = 5⁻¹
Now, 5³ × x⁻³ / 5⁻³ × 5² × x⁻⁶ = 5³ × x⁻³ / 5⁻¹ × x⁻⁶
= 5³/5⁻¹ × x⁻³/x⁻⁶
Using law of exponents,
am ÷ an = am - n
= 53 + 1 × x-3 + 6
= 5⁴ × x³
= 625x³
Therefore, the required value is 625x³.
✦ Try This: 625 × x⁻³ / 5⁴ × 125 × x⁻⁶.
☛ Also Check: NCERT Solutions for Class 8 Maths Chapter 12
NCERT Exemplar Class 8 Maths Chapter 8 Problem 120
125 × x⁻³ / 5⁻³ × 25 × x⁻⁶
Summary:
125 × x⁻³ / 5⁻³ × 25 × x⁻⁶ = 625x³ using the law of exponents am × an = am + n and am ÷ an = am - n
☛ Related Questions:
Math worksheets and
visual curriculum
visual curriculum