Solve the following system of equations 4x - 2y - z = -5, x - 3y + 2z = 3, 3x + y- 2z = -5.
Solution:
We will use the substitution method to find the values of x, y and z.
Let the equations 4x - 2y - z = -5 --- be (1)
⇒ x - 3y + 2z = 3 --- be (2)
⇒ 3x + y- 2z = -5 --- be (3)
By solving equation [1] for the variable z, we get
⇒ z = 4x - 2y + 5 --- be eq (4)
Substitute the value of z = 4x - 2y + 5 in equation [2]
⇒ x - 3y + 2 × (4x - 2y + 5 ) = 3
⇒ x - y = -1 --- be eq (5)
Substitute the value of z = 4x - 2y + 5 in equation [3]
⇒ 3x + y - 2 × (4x - 2y + 5) = -5
⇒ x + y = 1 --- be eq (6)
By adding equation [5] and [6] for the value of x, we get
⇒ x = 0
Substitute the value of x = 0 in equation [5]
⇒ x - y = -1
⇒ 0 - y = -1
⇒ y = 1
Substitute the values of x and y in equation [1], we get
⇒ 4(0) - 2(1) - z = -5
⇒ 0 - 2 - z = -5
⇒ -z = -5 + 2
⇒ -z = -3
⇒ z = 3
Solve the following system of equations 4x - 2y - z = -5, x - 3y + 2z = 3, 3x + y- 2z = -5.
Summary:
By solving the system of linear equations 4x - 2y - z = -5, x - 3y + 2z = 3, 3x + y- 2z = -5.; we get (x, y, z) = (0, 1, 3).
visual curriculum