Find the taylor polynomial t3(x) for the function f centered at the number:
f (x) = 7 tan-1(x), a = 1, t3(x)
Solution:
Given:
Function f(x) = tan-1(x)
Taylor polynomial up to three terms at x = a is given by
f(x) = f(a) + [(x - a) / 1!] f1(a) + [ (x - a)2/2! ] f11(a) + [ (x - a)3/3!] f111(a) +....
If a = 1
Taylor polynomial up to three terms at x = 1 is given by
f(x) = f(1) + [(x - 1) / 1! ] f1(1) + [(x - 1)2 / 2!] f11(1) + [(x - 1)3/3!] f111(1) +....
f(x) = tan-1(x)
f(1) = tan-1(1)
f(1) = 90°
f1(x) = 1 / (1 + x2)
⇒ f1(1) = 1/(1 + 12) = 1 / 1 + 1
⇒ f1(1) = 1/2
Second order derivative f11(x)
Differentiating f1 with respect to x gives
⇒ f11(x) = - (2 × 2x) / (1 + x2)2
⇒ f11(x) = - 4x / (1 + x2)2
⇒ f11(1)= - 4 / (1 + 12)2
= -(4)/22
⇒ f11(1) = - 4/4
= -1
Third order derivative f111(x)
Differentiating f11 With respect to x gives
⇒ f111(x) = [(1 + x2)2 (-4) - (-4x)(2(1 + x2)2x)] / (1 + x2)4
⇒ f111 (x) = (6x2 - 2)/(1 + x2)3
⇒ f111(1) = (6(1)2 - 2)/(1 + 12)3
⇒ f111(1) = (6 - 2)/(2)3
⇒ f111(1) = 4/(2)3
⇒ f111(1) = 4/8 = 1/2
Taylor polynomial up to three terms at x=a is given by
⇒f(x) = 90° + [(x - a)/1!] f1(a) + [(x - a)2/2!] f11(a) + [(x - a)3/3!] f111(a) +....
⇒f(x) = 90° + [(x - 1)/1!] 1/2 + [(x - 1)2/2!]( -1) + 1/2 [(x - 1)3/3!] +….
⇒ f(x) = 90° + [(x - 1)/2] - (x - 1)2/2+ (x - 1)3/12+….
Find the taylor polynomial t3(x) for the function f centered at the number:
f (x) = 7 tan - 1(x), a = 1 t3(x)
Summary:
The Taylor's series for the function f(x) up to the term containing of third degree is f(x) = tan-1(x) = 90° + [(x - 1)/2] - (x - 1)2/2+ (x - 1)3/12 +…
visual curriculum